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ABSTRACT
Pig Latin is a popular language which is widely used for par-
allel processing of massive data sets. Currently, subexpres-
sions occurring repeatedly in Pig Latin scripts are executed
as many times as they appear, and the current Pig Latin
optimizer does not identify reuse opportunities.

We present a novel optimization approach aiming at iden-
tifying and reusing repeated subexpressions in Pig Latin
scripts. Our optimization algorithm, named PigReuse, iden-
tifies subexpression merging opportunities, selects the best
ones to execute based on a cost function, and reuses their
results as needed in order to compute exactly the same out-
put as the original scripts. Our experiments demonstrate
the effectiveness of our approach.
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1. INTRODUCTION
The efficient processing of very large volumes of data

has lately relied on massively parallel processing models,
of which MapReduce is the most well known. However, the
simplicity of these models leads to relatively complex pro-
grams to express even moderately complex tasks. Thus, to
facilitate the specification of data processing tasks to be ex-
ecuted in a massively parallel fashion, several higher-level
query languages have been introduced.

In this work, we consider Pig Latin [18], which has raised
significant interest from the application developers as well as
the research community. Pig Latin provides dataflow-style
primitives for expressing complex analytical data processing
tasks. Pig Latin programs (also named scripts) are auto-
matically optimized and compiled into parallel processing
jobs by the Apache Pig system [19], which is included in all
leading Hadoop distributions e.g., HDP [10], CDH [4].

Part of this work was performed while the authors were
with Université Paris-Sud and INRIA.
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In a typical batch of Pig Latin scripts, there may be many
identical (or equivalent) sub-expressions, that is: script frag-
ments applying the same processing on the same inputs,
but appearing in distinct places within the same (or sev-
eral) scripts. While the Pig Latin engine includes a query
optimizer, it is currently not capable of recognizing such re-
peated subexpressions. As a consequence, they are executed
as many times as they appear in the script batch, whereas
there is obviously an opportunity for enhancing performance
by identifying common subexpressions, executing them only
once, and reusing the results in every script needing them.

Identifying and reusing common subexpressions occurring
in Pig Latin scripts automatically is the target of the present
work. The problem bears obvious similarities with the
known multi-query optimization and workflow reuse prob-
lems; however, as we discuss in Section 6, the Pig Latin
primitives lead to several novel aspects of the problem, which
lead us to propose dedicated, new algorithms to solve them.

Motivating example. A Pig Latin script consists of a set
of binding expressions and store expressions. Each binding
expression var = op means that the expression op is evalu-
ated, and the resulting bag of tuples is bound to the variable
var, which can be used by follow-up expressions in a script.

Consider the following Pig Latin script a1:
1 A = LOAD ‘page_views’ AS (user, time, www);
2 B = LOAD ‘users’ AS (name, zip);
3 R = JOIN A BY user, B BY name;
4 S = FOREACH R GENERATE user, time, zip;
5 STORE S INTO ‘a1out1’;
6 T = JOIN A BY user LEFT, B BY name;
7 STORE T INTO ‘a1out2’;

Line 1 loads data from a file page_views and creates a bag
of tuples that is bound to variable A. Each of these tuples
consists of three attributes (user,time,www). Line 2 loads
data from a second file, and binds the resulting tuple bag to
B. Line 3 joins the tuples of A and B based on the equality of
the values bound to attributes user and name. The next line
uses the Pig Latin operator FOREACH, that applies a function
on every tuple of the input bag. In this case, line 4 projects
the attributes user, time and zip of every tuple in R. Then
the result is stored in the file a1out1. In turn, line 6 executes
a left outer join over the tuples of A and B based on the
equality of the values bound to the same attributes user

and name, and the result is stored in a1out2.
The following script a2 only executes a left outer join over

the same inputs:
1 A = LOAD ‘page_views’ AS (user, time, www);
2 B = LOAD ‘users’ AS (name, zip);
3 R = JOIN A BY user LEFT, B BY name;
4 STORE R INTO ‘a2out’;
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The script b that we introduce next produces the same
outputs as a1 and a2:

1 A = LOAD ‘page_views’ AS (user, time, www);
2 B = LOAD ‘users’ AS (name, zip);
3 R = COGROUP A BY user, B BY name;
4 S = FOREACH R GENERATE flatten(A), flatten(B);
5 T = FOREACH S GENERATE user, time, zip;
6 STORE T INTO ‘a1out1’;
7 U = FOREACH R GENERATE flatten(A),
8 flatten (isEmpty(B) ? {(null,null,null)} : B);
9 STORE U INTO ‘a1out2’;

10 STORE U INTO ‘a2out’;

However, b’s execution time is 45% of the combined run-
ning time of a1 and a2. The reason is twofold. First, ob-
serve that the joins are rewritten into a COGROUP

1 operation
(line 3) and FOREACH operations (lines 4 and 7-8). The inter-
est of cogroup is that through some simple restructuring, one
can carve out of the cogroup output various flavors of joins
(natural, outer, nested, semijoin etc.) This restructuring
operation differs depending on whether we want to generate
the join between A and B needed for script a1 (line 4), or the
left outer join between A and B for scripts a1 and a2 (lines 7-
8). The detailed semantics of these restructuring operations
will become clear in Section 4. Thus, the first reason for
the speedup of b w.r.t. a1 and a2 is that the COGROUP output
is reused to generate the result for both joins. The second
reason is that in b, the left outer join is computed only once,
and its result is used to produce the desired output of scripts
a1 (line 9) and a2 (line 10).

A typical feature of our optimizer is that it works on the
algebraic representation of Pig Latin scripts. Thus, it is or-
thogonal to the Pig Latin query evaluation and execution
process. This allows our approach (i) to benefit from the
Pig Latin optimizer, and (ii) to apply our optimization in-
dependently of the underlying Pig Latin query compilation
and execution engines.

Contributions. The technical contributions of this work
are the following.

• We propose PigReuse, a multi-query optimization al-
gorithm that merges equivalent subexpressions it iden-
tifies in Directed Acyclic Graph of algebraic represen-
tation of a batch of Pig Latin scripts. PigReuse pro-
duces then an optimal merged plan where redundant
computations have been eliminated, by relying on Bi-
nary Integer Linear Programming in order to select the
best plan based on the provided cost function.

• We present techniques to improve effectiveness of our
baseline PigReuse optimization approach.

• We have implemented PigReuse as an extension mod-
ule within the Apache Pig system. We present an ex-
perimental evaluation of our techniques using two dif-
ferent cost functions to select the best plan.

Outline. Section 2 is dedicated to preliminaries. Section 3
presents the main techniques over which PigReuse relies on,
while Section 4 presents strategies to enhance it. Section 5
describes our experimental evaluation. Finally, Section 6
discusses related work, and then we conclude.

1
COGROUP is a generalization of the group-by operation on two

or more relations: for every distinct value of the grouping
key occurring in any of the inputs, it outputs a tuple that
includes an attribute group bound to the grouping key, and a
bag of tuples for each input Ri such that the bag Ri includes
all tuples in Ri that contain the value of the grouping key.

s1

A = LOAD ‘page_views’ AS (user, time, www);

B = LOAD ‘users’ AS (name, zip);

R = JOIN A BY user, B BY name;

S = FOREACH R GENERATE user, time, zip;

STORE S INTO ‘s1out’;

s2

A = LOAD ‘page_views’ AS (user, time, www);

B = LOAD ‘users’ AS (name, zip);

C = LOAD ‘power_users’ AS (id, phone);

R = JOIN A by user, B BY name;

S = FOREACH R GENERATE user, time, zip;

T = JOIN S BY user, C by id;

STORE T INTO ‘s2out’;

s3

A = LOAD ‘page_views’ AS (user, time, www);

B = LOAD ‘users’ AS (name, zip);

R = FOREACH A GENERATE user, time;

S = JOIN R by user LEFT, B by name;

STORE S INTO ‘s3out’;

s4

A = LOAD ‘page_views’ AS (user, time, www);

B = LOAD ‘users’ AS (name, zip);

C = LOAD ‘power_users’ AS (id, phone);

R = JOIN A BY user, B by name, C by id;

S = FOREACH R GENERATE user, www, zip, id, phone;

STORE S INTO ‘s4out’;

(a)

A B

q1 q4

π<user,time,zip>

A B C A B A B C

q2 q3s1out s2out s3out s4out
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(b)

Figure 1: Sample Pig Latin scripts (a) and their
corresponding algebraic DAG representation (b).

2. PRELIMINARIES
Since our approach strictly depends on rewriting Pig Latin

expressions into equivalent ones, we rely on algebraic repre-
sentation of Pig Latin scripts. Actually, the Pig Latin data
model features complex data types (e.g., tuple, map etc.)
and nested relations with duplicates (bags). Thus, we rely
on the Nested Relational Algebra for Bags [8] (NRAB, for
short) to represent Pig Latin scripts. We consider a subset
of the NRAB algebra and extend it with other operators,
such as cogroup. In turn, we have formalized (and imple-
mented) the entire Pig Latin-to-NRAB translation process.
Formal details of the translation are presented in [3].

We represent a set of NRAB binding expressions obtained
from a Pig Latin program as a Directed Acyclic Graph
(DAG); each binding is represented as a node, while edges
represent the data flow among nodes.

To illustrate, Figure 1.a introduces four different Pig Latin
scripts s1-s4; we will reuse them throughout the paper. The
scripts read data from the three input relations page_views,
users, and power_users; from now on, we denote these rela-
tions as A, B, and C.

After connecting the different algebraic expressions gener-
ated from s1, we obtain the DAG query q1 shown in Figure
1.b, also including the DAG-based representations of s2-s4.
We denote the NRAB projection operator as π, while the
selection operation is denoted as σ. In turn, inner join is
denoted as 1, while left outer join is denoted as 1.

3. REUSE-BASED OPTIMIZATION
Based on the previously introduced representation of

Pig Latin scripts as NRAB DAGs, we now introduce our
PigReuse algorithm that optimizes the query plans corre-
sponding to a batch of scripts by reusing results of re-
peated subexpressions. More specifically, given a collection
of NRAB DAG queries Q, PigReuse proceeds in two steps:
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Figure 2: EG corresponding to NRAB DAGs q1-q4.

Step (1). Identify and merge all the equivalent subexpres-
sions in Q. To this end, we use an AND-OR DAG, in which
an AND-node (or operator node) corresponds to an algebraic
operation in Q, while an OR-node (or equivalence node) rep-
resents a set of subexpressions that generate the same result.
Step (2). Find the optimal plan from the AND-OR DAG.
Based on a cost model, we make a globally optimal choice
of the set of operator nodes to be evaluated. Our approach
is independent of the particular cost function chosen.

The final output of PigReuse is an optimized plan that
contains (i) the operator nodes leading to minimizing the
cummulated cost of all the queries in Q, while producing,
together, the same set of outputs as the original Q, and
(ii) equivalence nodes that represent result sharing of an
operator node with other operators in Q. In the following
sections, we describe each step of our reuse-based optimiza-
tion algorithm in detail.

3.1 Equivalence-based merging
To join all detected equivalent expressions in Q, we build

an AND-OR DAG, which we term equivalence graph (EG,
in short); the construction is carried out in the spirit of pre-
vious optimization works [7, 21]. In the EG, an AND-node
corresponds to an algebraic operation (e.g., selection, pro-
jection etc.). An OR-node o is introduced whenever a set
of expressions e1, e2, . . . , ek have been identified as equiva-
lent; in the EG, the children of o are the algebraic nodes at
the roots of the expressions e1, e2, . . . , ek. In the following,
we refer to AND-nodes as operator nodes, and OR-nodes as
equivalence nodes. Formally, we define an EG as follows.

Definition 1. An equivalence graph (EG) is a DAG, de-
fined by the pair (O∪A∪To, E), with O, A, and To disjoint
sets of nodes, and:

• O is the set of equivalence nodes, A is the set of oper-
ator nodes, To is the set of sink nodes.

• E ⊆ (O ×A) ∪ (A×O) ∪ (A× To) is a set of directed
edges such that: each node a ∈ A has an in-degree
of at least one, and an out-degree equal to one; each
node o ∈ O has an in-degree of at least one, and an
out-degree of at least one; each node to ∈ To has an
in-degree of at least one. �

Observe that in an EG,O nodes can only point to A nodes,
while A nodes can point to O or To nodes.

Building the equivalence graph. To build the equiv-
alence graph, we need to identify equivalent expressions
within the input NRAB query set Q. We rely on the stan-
dard notion of query equivalence, i.e., two expressions are
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s1out
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⟕<user,name>

s2out

s3out

⋈<user,name,id>

π<user,www,zip,
id,phone>

s4out

π<user,time,zip>

A CB

Figure 3: Possible REG for the EG in Figure 2.

equivalent iff their result is provably the same regardless
of the data on which they are computed. Our equivalence
search algorithm is sound but not complete; see [3] for a
detailed discussion.

Figure 2 depicts the EG corresponding to the NRAB
DAGs q1 to q4 in Figure 1.b. In Figure 2, all the leaf nodes in
the NRAB DAGs that correspond to the same scan opera-
tion (namely, nodes A, B, and C) feed the same equivalence
node. The equi-joins coming from DAGs q1 and q2 on rela-
tions A and B over attributes user and name are also inputs
to the same equivalence node.

3.2 Cost-based plan selection
Once an EG has been generated from a set of NRAB

queries, our goal is to find the best alternative plan (having
the smallest possible cost) computing the same outputs as
the original scripts. We call the output plan a result equiv-
alence graph (or REG, in short).

Definition 2. A result equivalence graph (REG) with
respect to an EG defined by (O∪A∪TO, E) is itself a DAG,
defined by the pair (O∗ ∪A∗ ∪ TO, E

∗) such that:

• O∗ ⊆ O, A∗ ⊆ A, E∗ ⊆ E.

• The set of sink nodes To is identical in EG and REG.
Each sink node has an in-degree of exactly one.

• Each operator node in-degree in EG and REG is equal.
Each equivalence node has an in-degree of exactly one,
and an out-degree of at least one. �

In the REG, we choose exactly one among the alterna-
tives provided by each EG equivalence nodes; the REG pro-
duces the same outputs as the original EG, as all sink nodes
are preserved. Further, each REG can be straightforwardly
translated into a NRAB DAG which is basically an exe-
cutable Pig Latin expression. The latter expression is the
one we turn to Pig for execution.

The choice of which alternative to pick for each equiv-
alence node is guided by a cost function, the overall goal
being to minimize the global cost of the plan. We assign a
cost (weight) to each edge n1 → n2 in the EG, representing
all the processing cost (or effort) required to fully build the
result of n2 out of the result of n1.

Figure 3 shows a possible REG produced for the EG de-
picted in Figure 2. This REG can be obtained by using a
cost function based on counting the operator nodes in the
optimized script. In Section 5, we consider different cost
functions and compare them experimentally.

3.3 Cost minimization
We model the problem of finding the minimum-cost REG

relying on Binary Integer Programming (BIP), that has



Minimize C =
∑
e∈E

Cexe subject to:

xe ∈ {0, 1} ∀e ∈ E (1)∑
e∈Ein

to
xe = 1 ∀to ∈ To (2)∑

e∈Ein
a
xe = xEout

a
× |Ein

a | ∀a ∈ A (3)∑
e∈Ein

o
xe = maxe∈Eout

o
xe ∀o ∈ O (4)

Figure 4: BIP reduction of the problem.

already been used to solve database optimization prob-
lems [12, 25]. Broadly speaking, a linear programming prob-
lem can be expressed as: given a set of linear inequality
constraints over a set of variables find value assignments
for the variables such that the value of an objective func-
tion depending on these variables is minimized. Many years
of research and development efforts have led to the imple-
mentation of extremely efficient BIP solvers.

Generating the result equivalence graph. Given an
input EG, for each node n ∈ O ∪ A ∪ To, we denote by Ein

n

and Eout
n the sets of incoming and outgoing edges for n,

respectively. For each edge e ∈ E, we introduce a variable
xe, denoting whether or not e is part of the REG. Since
in our specific problem formulation any xe takes values in
{0, 1}, our problem is formulated as a BIP problem. Further,
for each edge e ∈ E, we denote by Ce the cost assigned to e
by some cost function C. Importantly, the model we present
next is independent of the chosen cost function.

Our optimization problem is stated in BIP terms in Fig-
ure 4. Equation (1) states that each xe variable takes values
in {0, 1}. (2) ensures that every output is generated exactly
once. (3) states that if the (only) outgoing edge of an op-
erator node is selected, all of its inputs are selected as well.
This is required in order for the algebraic operator to be ca-
pable of correctly computing its results. Finally, (4) states
that if an equivalence node is generated, it should be used at
least once, which is modeled by means of a max expression
(details about its BIP encoding can be found in [3]).

4. EFFECTIVE PIGREUSE
In the following, we present three extensions to the basic

PigReuse algorithm which allow for identifying and exploit-
ing additional factorization opportunities (formal details can
be found in [3]).

Normalization of the input NRAB DAGs is carried out by
reordering π operator nodes as follows: we push them away
from scan operators or closer to store operators. We do this
by visiting all operator nodes in a NRAB DAG, starting from
a scan, and by moving each π operator up one level at a time
if possible. Although pushing projections up through a plan
is counterintuitive from the classical optimization point of
view, it increases the chances to find equivalent subexpres-
sions, as we will shortly illustrate. Further, after our reuse-
based algorithm produces the optimized REG, we push the π
operators back down to avoid the performance loss incurred
by manipulating many attributes at all levels.

Since cogroup nests the input relations, reordering π with
this operator requires complex rewriting. Specifically, we use
the NRAB restructuring operator in the rewriting, denoted
as map〈ϕ〉, which applies a function ϕ to all tuples in the
input. Thus, we rewrite the project π into a map that applies
π on the corresponding bag of tuples in the input relation.

To illustrate the advantages of this phase, Figure 5.a
shows the EG generated by PigReuse over the normalized
NRAB DAGs q1 to q4. Comparing this EG with the one
shown in Figure 2, we see that due to the swapping of the
π operator corresponding to q2, our algorithm can identify
an additional common subexpression between q2 and q4, by
determining the equivalence between the joins over A, B,
and C; the corresponding equivalence node is highlighted.

Join decomposition. The semantics of Pig Latin’s join
operators e.g., 1, 1, 1 , or 1 allow rewriting these oper-
ators into combinations of cogroup and map operators. The
advantage of decomposing the joins in this way is that the
result of the cogroup operation, which does the heavy-lifting
of assembling groups of tuples from which the map will then
build join results, can be shared across different kinds of
joins. The map will be different in each case depending on
the join type, but the most expensive component of com-
puting the join, namely the cogroup, will be factorized.

Figure 5.b shows the EG generated by PigReuse after ap-
plying normalization and decomposition to the NRAB DAGs
q1 to q4. One can observe that the decomposition of the 1

operators from q1 and q2, and the 1 operator from q3 leads
to an additional sharing opportunity, as the result of the
cogroup on attributes user and name can be shared by the
subsequent map operations (highlighted equivalence node).

Observe that 1 operators were rewritten into two opera-
tors. The first one is a cogroup on the attributes used by
the join predicate. The second one is a map that does the
following for each input tuple: (i) project each bag of tuples
corresponding to the cogroup input relations; (ii) apply a
NRAB bag destroy operation, denoted as δ, which unnests
one level those bags; and (iii) perform a cartesian product
× among the tuples resulting from unnesting those bags.
If a bag is empty, e.g., the input relation did not contain
any value for the given grouping value, the δ operator does
not produce any tuple, and thus the tuples from the other
bags for the given tuple are discarded. Thus, the rewriting
produces the exact same result as the original operator.

For the left outer join 1 rewriting, cogroup is followed by
a map operator that (i) unnests the bag associated to the
left input of the cogroup; (ii) if the bag associated to the
right input (var2) is empty, it replaces it with a bag with a
null tuple, otherwise it keeps the bag as it is; (iii) unnests
the bag resulting from the previous operation; and (iv) per-
forms a cartesian product on the tuples resulting from the δ
operations in order to generate the 1 result.

Aggressive merge is based on the observation that it is
possible to derive the results of a join or cogroup operator
from the results of a cogroup′ operator, as long as the for-
mer relies on a subset of the input relations and attributes
of cogroup′. This means that these rewritings rely on the
notion of cogroup containment. In particular, this entails
checking the containment relationship between respective
sets of input relations and attributes. Then, in order to
generate the result of the original 1 or cogroup operator, we
add the appropriate operator on top of cogroup′. Differently
from previous extensions, aggressive merge is applied while
creating the EG.

Figure 5.c depicts the new EG produced by PigReuse us-
ing aggressive merge; the new connections are highlighted.
The figure shows how the results for the cogroup, 1, and 1

operators on A and B relations are derived from the cogroup
operator on A, B, and C.
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Figure 5: EG generated by PigReuse on (a) the normalized DAGs q1-q4, (b) the normalized and decomposed
DAGs q1-q4, and (c) applying aggressive merge on the normalized and decomposed DAGs q1-q4.

5. EXPERIMENTAL EVALUATION
We have implemented PigReuse in Java 1.6. The source

code amounts to about 8000 lines and 50 classes. It works
on top of Apache Pig 0.12.1 [19], which relied on the Hadoop
platform 1.1.2 [9]. The cost-based plan selection algorithm
uses the Gurobi BIP solver 5.6.2 (www.gurobi.com).

Deployment. All our experiments run in a cluster of 8
nodes connected by a 1GB Ethernet. Each node has a
2.93GHz Quad Core Xeon processor and 16GB RAM, runs
Linux CentOS 6.4, and has two 600GB SATA hard disks
where HDFS is mounted.

Setup. For validation, we used data sets and scripts pro-
vided by the PigMix [20] PigLatin performance benchmark.
We created a page_views input file of 250 million rows; the
benchmark includes other input files, which are based on the
page_views file, and are much smaller than this one. The to-
tal size of the data set amounted to approximately 400 GB
before the 3-way replication applied by HDFS.

We run our algorithm with two different workloads, de-
noted W1 and W2, containing 12 and 20 Pig Latin scripts,
respectively. Details about these workloads are given in [3].

Cost functions and experiment metrics. Currently we
have implemented two cost functions in PigReuse, focusing
on reducing the number of logical operators, and the number
of MapReduce jobs, respectively. Beyond these two cost
functions used by our PigReuse algorithm, we also quantify
the performance of executing a PigLatin workload through
the following standard metrics: the Execution time is the
wall-clock time measured from the moment when the scripts
are submitted to the Pig engine, until the moment their
execution is completely finished; the Total work is the sum
of the effort made on all the nodes, i.e., the total CPU time
as returned by logs of the MapReduce execution engine.

Experimental results. We now study the benefits brought
by the optimizations proposed in this work. The reported
results are averaged over three runs.

Figure 6 shows the effectiveness of our baseline PigReuse
algorithm (PR), PigReuse with normalization (PR+N), Pi-
gReuse with normalization and decomposition (PR+ND),
and PigReuse applying all our extensions including aggres-
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Figure 6: PigReuse evaluation using workload W1

(left) and W2 (right).

sive merge (PR+NDA). The figure shows relative values for
the execution time and total work metrics. The cost func-
tion that minimizes the total number of operators in the EG
is denoted by minop, while the cost function that minimizes
the total number of MapReduce jobs is denoted by minmr.

In Figure 6.a, we notice that the total execution time is
reduced by more than 70% on average among our PigReuse
algorithms. Two alternative executions without PigReuse
are shown. In the first one (NoPR/S), we execute sequen-
tially every script in each workload using a single Pig client.
In the second one (NoPR/M), we use multiple Pig clients
that send concurrently the jobs resulting from the scripts to
MapReduce. As it can be seen, the execution time for the
second variant is lower as jobs resulting from multiple scripts
are scheduled together, and thus the cluster usage is max-
imized. However, observe that the total work (Figure 6.b)
increases for the multi-client alternative. The reason is that
the scheduler cannot overlap significantly the map phases of
multiple queries since there are too many map tasks. Thus,
their execution remains quite sequential.

For the workloads we considered, our extensions reduced
the total work over the baseline PigReuse algorithm (Fig-
ure 6.b). However, this was not always the case for the
execution time (Figure 6.a). The reason is that some of the
resulting plans requiring more effort had less sequential ex-
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ecution steps, thus they could be parallelized easier by the
MapReduce engine. When aggressive merge was applied,
the execution time and the total work decreased only if the
minmr cost function was used. The reason is that if the
minop function is used, PigReuse generates the same REG
for PR+ND and PR+NDA, namely, the REG with the mini-
mum number of operators. However, with minmr, PigReuse
chooses a plan with more operators but that runs faster.

6. RELATED WORK
Relational multi-query optimization. Our work di-
rectly relates to multi-query optimization (MQO). The early
works [11, 22] proposed exhaustive, expensive algorithms
which were not integrated with existing system optimizers.
The technique presented in [21] was the first to integrate
MQO into a Volcano-style optimizer, while [26] presents a
completely integrated MQO solution accounting also for the
usage and maintenance of materialized views. The approach
of [23] takes into account the physical requirements of the
consumers of common sub-expressions in order to propose
globally optimal execution plans. While all of these works
deals with the relational algebra, our approach optimizes
workloads expressed in terms of the richer NRAB algebra in-
cluding nesting. Further, differently from these approaches,
ours can be directly applied to alternative implementations
of Pig Latin or of any other language based on NRAB.

The above considerations still hold for the approach pro-
posed in [6], which relies on sharing physical operators in
large SQL workloads. The approach presented in [15] also
addresses both global optimization and sharing possibilities
at once, but it aims at optimizing a single query, while exten-
sions to multi-query are not trivial and not explored so far.
As pointed out in [6], the global optimization plus sharing
problem can not be expressed by a linear program and thus
a branch-and-bound heuristic solution is proposed, whereas
our sharing problem can be solved optimally through BIP.

[14] optimizes SQL workloads at runtime and tries to max-
imize recycling opportunities of intermediary results. Due
to the complexity constraints of considering multiple rewrit-
ings for each query, [14] only considers the optimized plan
for each of them, in contrast to PigReuse. This design choice
comes at the price of missing sharing opportunities.
Reuse-based optimizations on MapReduce. Recent
works have sought to avoid redundant processing for a batch
of MapReduce jobs by sharing their scans or intermediary
results. Since the semantics of the computation is not visible
at the level of MapReduce programs, these works are either
limited to detecting identical inputs and outputs of MapRe-
duce tasks (without being able to reason on task equiva-
lence) [1, 16, 24], or need some annotations to the jobs to
inform about sharing opportunities [5, 13]. Our PigReuse
algorithm works on the higher-level semantic representation
of Pig Latin scripts. This enables more complex reuse-based
optimizations, e.g., through algebraic expression rewriting.

MQO for higher-level languages based on MapReduce has
been considered in [2, 17]. For Hive workloads, [2] shows by
example that improving replication of frequently used data,
re-ordering queries in a workload, and scheduling queries in
parallel can improve performance. In turn, [17] studies how
to schedule Pig Latin programs in order to best profit from
the shared computations. The core of our work, instead,
is concerned with identifying common sub-expression of a
workload, and examining the global sharing problem, which
are not addressed in [17].

7. CONCLUSIONS
We have presented a novel reuse-based optimization ap-

proach for Pig Latin scripts. Our PigReuse algorithm iden-
tifies sub-expression merging opportunities, and selects the
best ones to merge based on a cost-based search process
implemented with the help of a linear program solver. Pi-
gReuse allows plugging any cost function and its output is a
merged script reducing its value. Our experimental results
demonstrate the effectiveness of our optimization strategies.
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